
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Implementing String Matching Algorithm to Trace

Song Identities from fragment of lyrics

Albert - 13522081

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): albert.choe73@gmail.com

Abstract—Identifying songs from fragments of lyrics is a

significant challenge in the field of music information retrieval.

This paper explores the implementation of string matching

algorithms to address this problem. Specifically, the Knuth-

Morris-Pratt (KMP), Boyer-Moore, and Brute Force algorithms

are utilized to trace song identities from partial lyrics. The

methodology includes gathering song data from Spotify and

lyrics from Genius, preprocessing the lyrics, and applying the

string matching algorithms to identify songs based on user-

provided lyric fragments. Experimental results demonstrate the

efficiency and accuracy of each algorithm, highlighting their

strengths and limitations in practical applications. The findings

contribute to the development of robust music identification

systems that can effectively handle large datasets and diverse

lyrical content.

Keywords—string matching, KMP algorithm, Boyer-Moore

algorithm, song identification, music information retrieval

I. INTRODUCTION

 In the digital age, the ability to access and enjoy music has

become easier, thanks to the advent of streaming services and

extensive digital libraries. These platforms offer users a

seemingly infinite collection of songs from various genres,

artists, and eras. Music plays a crucial role in our lives,

providing entertainment, emotional expression, and a means of

cultural connection. However, with such an expansive catalog,

identifying a specific song based on limited information, such

as a fragment of lyrics, remains a significant challenge. This

problem is particularly relevant in scenarios where users

remember only a portion of the lyrics but are unable to recall

the song title or the artist's name.

 The proliferation of music content has necessitated the

development of efficient and accurate song identification

systems. Traditional methods of song identification, such as

manual searching or relying on expert knowledge, are

impractical given the vast amount of available music.

Consequently, the field of music information retrieval (MIR)

has emerged, focusing on leveraging computational techniques

to solve this problem. Among the diverse approaches in MIR,

string matching algorithms have emerged as a powerful tool

for identifying songs from partial lyrics. String matching

involves finding occurrences of a substring (pattern) within a

larger string (text), making it an ideal technique for matching

lyric fragments to complete song lyrics.

 The need for effective song identification systems is driven

by various use cases. For instance, individuals often

experience moments where they hear a song in a public place

or on the radio but can only recall a few words. In such

situations, being able to quickly and accurately identify the

song enhances the user experience and satisfaction.

Additionally, music streaming services can benefit from

improved recommendation systems that utilize partial lyric

matching to suggest songs based on user input. This capability

not only enriches the user's interaction with the service but

also promotes the discovery of new music.

 This paper focuses on the implementation and evaluation of

three well-known string matching algorithms: the Knuth-

Morris-Pratt (KMP) algorithm, the Boyer-Moore algorithm,

and the Brute Force algorithm. Each of these algorithms offers

unique advantages and has been extensively studied in the

context of computer science and text processing. The

approach includes collecting song data from Spotify using its

API and fetching the corresponding lyrics from Genius,

followed by preprocessing the lyrics to enhance the accuracy

of the string matching algorithms.

II. LIMITATION

 Despite the promising results, this paper have several

limitations. The dataset, while diverse, is limited in size and

may not fully represent the global music catalog, affecting the

generalizability of the findings. The accuracy of the lyrics

obtained from Genius is crucial, and any errors or

discrepancies can impact the identification process. The

preprocessing step, which involves cleaning and tokenizing

the lyrics, might alter the lyrics' structure and affect the match

accuracy. Additionally, the performance of the string matching

algorithms may vary with very short lyric fragments or highly

repetitive text. Future work should address these limitations by

using larger, more comprehensive datasets, improving

preprocessing techniques, and exploring enhancements to the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

algorithms to better handle short and repetitive lyric

fragments.

III. THEORETICAL BASIS

A. Strings

 In computer science, a string is a sequence of characters
used to represent text. Each character in a string can be a letter,
digit, punctuation mark, or any other symbol, and the length of
a string is determined by the number of characters it contains.

 Strings are used extensively in programming languages for
handling input and output operations, constructing messages,
and creating user interfaces. Common operations on strings
include concatenation (joining two strings together), substring
extraction (retrieving a portion of the string), and searching for
patterns within the string. These operations are essential for
tasks such as parsing text, formatting data, and performing text
analysis.

 One key property of strings in many programming

languages, such as Python and Java, is their immutability. This

means that once a string is created, its content cannot be

changed. Any operation that appears to modify a string

actually creates a new string with the desired changes.

Immutability ensures that strings are thread-safe and can be

used reliably in concurrent programming environments,

preventing issues related to data corruption or unexpected

modifications.

 In different programming languages, strings are represented

and managed in various ways. For example, in C, a string is

typically an array of characters terminated by a null character

(\0), whereas in higher-level languages like Python, strings are

objects with built-in methods for manipulation and processing.

This abstraction in higher-level languages simplifies string

operations and enhances productivity.

 In the context of string processing, the concepts of prefix
and suffix are fundamental:

1. Prefix

A prefix of a string is any leading contiguous portion
of that string. For instance, given the string
"algorithm," its prefixes include "", "a", "al", "alg",
"algo", "algor", "algori", "algorit", "algorith", and
"algorithm." Each of these prefixes starts from the
beginning of the string and includes progressively
more characters until the entire string is included.
Prefixes are critical in various string processing tasks,
such as searching and pattern matching, where the
initial segments of the string are compared to
determine matches.

2. Suffix

A suffix of a string is any trailing contiguous portion of
that string. Using the same example string "algorithm,"
its suffixes include "", "m", "hm", "ithm", "rithm",
"orithm", "gorithm", "lgorithm", and "algorithm." Each
suffix starts from some position within the string and

extends to the end of the string. Suffixes are essential
in various algorithms, especially those involving
searching and sorting operations. In pattern matching,
suffixes can be used to efficiently skip sections of the
text that do not match the pattern, thus enhancing the
performance of the algorithm.

Fig 1. Prefix and Suffix

Source : Author’s personal documentation

B. Sring Matching

String matching, also known as pattern matching, is a
fundamental problem in computer science where the objective
is to find all occurrences of a substring (referred to as the
pattern) within a larger string (referred to as the text). It is an
algorithm used to find occurrences of a short string within a
long string. This problem is integral to various applications,
including text search engines, DNA sequence analysis, data
compression, and, in this project, music information retrieval.
The process involves comparing the pattern to the text and
identifying positions where the pattern matches the text
exactly.

Generally, there are 3 main algorithms for performing
string matching :

1. Brute Force Algorithm

Brute force algorithm is the simplest method for string
matching. It operates by sliding the pattern over the
text one character at a time and checking for a match at
each position. This is done by comparing each
character of the pattern to the corresponding character
in the text until either a mismatch is found or the entire
pattern is matched.

Algorithm Steps:

1. Align the pattern at the start of the text.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

2. Compare the pattern to the text character by

character.

3. If all characters match, record the starting

position.

4. Shift the pattern one position to the right and

repeat the comparison until the end of the

text is reached.

Fig 2. Brute Force Algorithm

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf .Accessed

While this method is straightforward and easy to

implement, it is not efficient for large texts or long

patterns. The time complexity of the brute force

algorithm is O(n*m), where n is the length of the text

and m is the length of the pattern. This inefficiency

arises because the algorithm does not take advantage

of any information gained from previous

comparisons, leading to redundant checks.

For example, if the text is

"ABABDABACDABABCABAB" and the pattern is

"ABABCABAB", the brute force approach will start

comparing the pattern with the text from the first

character of the text, then shift one character to the

right, and repeat the process until it finds a match or

reaches the end of the text. For each possible starting

position in the text, the algorithm checks if the

pattern matches the substring of the text starting from

that position. This involves comparing each character

of the pattern with the corresponding character in the

text. If a mismatch is found, the pattern is shifted one

position to the right, and the comparison starts again

from the first character of the pattern. This process

continues until either a match is found or the end of

the text is reached. This method can become

extremely slow if the text or pattern is large.

2. Knuth-Morris-Pratt (KMP) Algorithm

The Knuth-Morris-Pratt (KMP) algorithm is an

improvement over the naive approach, designed to

reduce the number of comparisons by preprocessing

the pattern. The key idea behind KMP is to preprocess

the pattern to create an array of longest prefix suffix

(LPS) values. These values are used to skip

unnecessary comparisons during the search phase.

Algorithm Steps:

1. Preprocess the pattern to create the LPS

array.

2. Use the LPS array to skip sections of the text

that have already been matched.

Fig 3. KMP Algorithm

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf .Accessed

The LPS array indicates the longest proper prefix of

the pattern which is also a suffix. During the search

phase, if a mismatch occurs after some matches, the

algorithm uses the LPS array to determine how far

the pattern can be shifted to avoid rechecking

characters that are known to match.

Fig 4. KMP Algorithm with Border Function

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf .Accessed

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

For instance, consider the pattern "ABABCABAB".

The LPS array for this pattern is [0, 0, 1, 2, 0, 1, 2, 3,

4], indicating the lengths of the longest proper prefix

which is also a suffix for each position in the pattern.

Using this array, the KMP algorithm can efficiently

skip sections of the text, reducing the overall number

of comparisons.

The time complexity of KMP is O(n + m), where n is

the length of the text and m is the length of the

pattern. This makes it significantly more efficient

than the brute force algorithm, especially for large

texts and patterns.

3. Boyer-Moore Algorithm

The Boyer-Moore algorithm is one of the most

efficient string matching algorithms, known for its

practical performance on large texts. It uses two key

heuristics: the looking-glass technique and the

character-jump technique, which correspond to the

good suffix and bad character rules commonly

mentioned in other contexts.

1. Looking-Glass Technique

This heuristic involves matching the pattern from

right to left, starting from the end of the pattern. If

a mismatch occurs, the algorithm uses the

information gained from the mismatch to skip

sections of the text that cannot contain the pattern,

thus reducing the number of comparisons.

2. Character-Jump Technique

When a mismatch occurs, this technique

determines how far to shift the pattern based on

the character in the text that caused the mismatch.

The shift is calculated to align the last occurrence

of the mismatched character in the pattern with its

position in the text. If the character does not

appear in the pattern, the pattern is shifted past the

mismatched character entirely.

The calculation of the jump is as follows: The

algorithm preprocesses the pattern to create a "last

occurrence table" which records the last index of

each character in the pattern. During the search, if

a mismatch occurs and the mismatched character

is in the text but not in the pattern, the pattern is

shifted to the right by the full length of the

pattern. If the mismatched character does appear

in the pattern, the pattern is shifted to align the

last occurrence of the mismatched character in the

pattern with its position in the text. This allows

the algorithm to make large jumps over sections

of text that cannot contain the pattern, thereby

skipping unnecessary comparisons.

Algorithm Steps:

1. Preprocess the pattern to create the last

occurence table.

2. Align the pattern at the start of the text.

3. Compare the pattern from right to left.

4. Use the table to skip sections of the text that

cannot match the pattern.

Fig 5. BM Algorithm

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf .Accessed

Fig 6. BM Algorithm with Last Ocurrence Table

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf .Accessed

The Boyer-Moore algorithm has an average-case

time complexity of O(n/m), where n is the length of

the text and m is the length of the pattern. This

efficiency is achieved through its ability to skip large

sections of the text. The use of the looking-glass

technique and the character-jump technique allows

the algorithm to make large jumps in the text,

avoiding unnecessary comparisons. However, its

performance can degrade in specific cases, such as

with small alphabets and patterns with frequent

characters.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

In summary, the Boyer-Moore algorithm combines

the looking-glass technique and the character-jump

technique to efficiently match patterns within a text.

By using the last occurrence table, it can skip

sections of the text that do not match, significantly

improving performance over brute force string

matching approaches. This makes the Boyer-Moore

algorithm highly effective for practical applications,

especially in large texts.

IV. IMPLEMENTATION

A. Data Sample

To demonstrate the efficacy of string matching algorithms
in identifying songs from lyric fragments, a comprehensive
dataset is required. This dataset is constructed using song
metadata and lyrics sourced from popular platforms. The
following sections elaborate on the process of data collection,
the specifics of the gathered data, and the rationale behind
choosing these data sources.

Data was collected from Spotify and Genius, two leading
platforms in the music streaming and lyrics domain,
respectively. Spotify offers extensive metadata for songs,
including attributes such as track name, artist name, album
details, and popularity metrics. Genius provides accurate and
detailed lyrics for a wide range of songs. The integration of
these two sources allows for the creation of a rich dataset
suitable for testing string matching algorithms.

• Spotify API

The Spotify API is a vital tool for gathering the top

50 songs from a specific playlist. This playlist is

curated to reflect current popular tracks, ensuring a

broad representation of genres and artists.

Authentication with the Spotify API is performed

using the client credentials flow, which requires a

client ID and client secret to obtain an access token.

This access token allows the author to make

authorized requests to the Spotify API.

For each song retrieved from the Spotify playlist, the

following details are collected:

o Track Name: The official name of the song.

o Artist Name: The primary artist or band

performing the song.

o Popularity: A numerical value provided by

Spotify indicating the song's popularity.

o Spotify URL: A direct link to the song on the

Spotify platform.

o Track ID: A unique identifier for the track on

Spotify.

o Album Name: The name of the album that

includes the song.

o Release Date: The release date of the album or

single.

o Genres: Musical genres associated with the song

or artist, which are obtained by querying the

artist's information.

• Genius API:

To complement the song data obtained from Spotify,

the Genius API is utilized to fetch the lyrics for these

songs. For each track, a search query is constructed

using the track name and artist name. If a match is

found, the lyrics are retrieved from the song's Genius

page. This process ensures that the lyrics are accurate

and up-to-date.

The combination of data from Spotify and lyrics from

Genius forms a comprehensive dataset that includes

not only the song metadata but also the lyrical

content, which is essential for the subsequent string

matching analysis. The detailed information gathered

through these APIs allows for a robust examination

of string matching algorithms in identifying songs

from fragments of lyrics.

Fig 7. Fetching Spotify API

Source : Author’s personal documentation

In summary, the data collection methodology involves
using the Spotify API to retrieve detailed song metadata and
the Genius API to acquire accurate song lyrics. This dual
approach ensures a rich dataset that supports the exploration
and implementation of various string matching algorithms. The
data obtained is stored in a JSON file, providing a structured
and accessible format for further processing. This dataset,
comprising the top 50 current popular songs from Spotify,
forms the basis for the subsequent steps in this research.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

B. Preprocessing

 After collecting and storing the data in a JSON file, the

next crucial step is preprocessing the lyrics to ensure that they

are in a suitable format for the string matching algorithms.

Preprocessing involves normalizing the text and removing

unnecessary characters to facilitate accurate and efficient

pattern matching.

 The first step in preprocessing is normalizing the text. This

involves converting all characters to lowercase to ensure

uniformity, as string matching algorithms are case-sensitive.

Additionally, numbers are removed since they are not

typically relevant to the lyrical content and could introduce

noise into the data.

Fig 7. Preproccess Algorithm

Source : Author’s personal documentation

 In this preprocessing function, the text is first converted to

lowercase. Then, a regular expression is used to remove any

numerical digits. The RegexpTokenizer is utilized to split the

text into individual words (tokens). Finally, the cleaned tokens

are recombined into a single string.

 For each song in the dataset, the lyrics are preprocessed

using the function defined above. This step ensures that the

lyrics are in a standardized format, making them suitable for

input into the string matching algorithms.

 Preprocessing is a critical step in the implementation

process. It ensures that the lyrics are in a consistent format,

which is essential for accurate string matching. By removing

extraneous characters and standardizing the text, the

algorithms can focus on the meaningful content of the lyrics,

improving their performance and accuracy.

C. String Matching Algorithm

The core of this project involves applying and comparing

different string matching algorithms to identify songs from

lyric fragments. This section details the implementation of

three prominent string matching algorithms: Knuth-Morris-

Pratt (KMP), Boyer-Moore, and Brute Force. Each algorithm

is implemented and evaluated for its effectiveness and

efficiency in matching lyric fragments to full song lyrics.

1. Knuth-Morris-Pratt (KMP) Algorithm

 The KMP algorithm improves the efficiency of the

search process by preprocessing the pattern to create

a longest prefix suffix (LPS) array. This array helps

the algorithm to avoid unnecessary comparisons by

allowing it to skip sections of the text where

mismatches occur.

Fig 8. KMP Algorithm

Source : Author’s personal documentation

In this implementation, the computeLPSArray function

generates the LPS array for the given pattern. The

KMP_search function uses this array to efficiently find the

pattern within the text.

2. Boyer-Moore Algorithm

 The Boyer-Moore algorithm uses two heuristics:

the looking-glass technique and the character-jump

technique. These heuristics allow the algorithm to

skip sections of the text that cannot match the pattern,

thus reducing the number of comparisons.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig 9. BM Algorithm

Source : Author’s personal documentation

 In the Boyer-Moore algorithm, the

bad_character_table(Last Ocurrence Table) function

creates a table that stores the rightmost occurrence of

each character in the pattern. The

boyer_moore_search function uses this table to

determine how far to shift the pattern when a

mismatch occurs.

3. Brute Force Algorithm

 The Brute Force algorithm is the simplest and least

efficient of the three. It checks each possible position

in the text for a match by comparing the pattern to the

substring of the text at that position.

 Fig 10. Brute Force Algorithm

Source : Author’s personal documentation

In the Brute Force algorithm, the brute_force_search

function iterates through the text, comparing the

pattern to each substring of the text to find matches.

Combining and Comparing the Algorithms: The final step

involves integrating these algorithms into a unified framework

to search for lyric fragments within the dataset and compare

their performance.

Fig 11. Main Algorithm

Source : Author’s personal documentation

In the combined implementation, the find_songs function

applies the specified string matching algorithm to search for

the lyric fragment in the dataset. The display_results function

presents the results and the efficiency of each algorithm.

By clearly detailing each step of the implementation, this

section demonstrates how the collected data is processed and

analyzed using different string matching algorithms. The

comparison of these algorithms provides insights into their

performance and suitability for identifying songs from

fragments of lyrics.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

V. TESTING AND ANALYSIS

The testing results demonstrated the capabilities of each

algorithm in identifying songs from lyric fragments. Below are

examples of the test cases and their outcomes.

1. Test Case 1

Fig 12. Test Case 1

2. Test Case 2

Fig 13. Test Case 2

The analysis of the testing results provides insights into the

performance and suitability of each algorithm for the task of

song identification from lyric fragments.

Knuth-Morris-Pratt (KMP) Algorithm: The KMP

algorithm demonstrated consistent performance with quick

search times across various test cases. Its preprocessing phase,

which constructs the longest prefix suffix (LPS) array, enables

efficient skipping of comparisons, making it suitable for large

texts with frequent patterns. The KMP algorithm is

particularly effective in situations where the pattern contains

repetitive sub-patterns, as it avoids redundant comparisons by

using the precomputed LPS array. This characteristic makes it

robust for matching lengthy lyric fragments efficiently.

Boyer-Moore Algorithm: The Boyer-Moore algorithm

outperformed the other algorithms in several test cases,

particularly in terms of search time. The use of the looking-

glass and character-jump techniques allows for significant

reductions in comparisons by leveraging the last occurrence

table. This makes Boyer-Moore highly efficient, especially for

longer patterns and texts with fewer repeating characters.

However, its performance can degrade with small alphabets or

highly repetitive patterns. The Boyer-Moore algorithm’s

ability to skip large portions of the text by using the

precomputed last occurrence table for characters in the pattern

contributes to its superior performance in most practical

scenarios.

Brute Force Algorithm: The Brute Force algorithm, while

simple and easy to implement, was the least efficient in terms

of search time. It checks each possible position in the text for a

match, leading to higher computational costs, especially for

longer texts and patterns. Despite its simplicity, it serves as a

baseline for comparison with more sophisticated algorithms.

The Brute Force approach is straightforward, as it performs a

character-by-character comparison for each possible position

in the text. While this ensures accuracy, it results in

significantly higher time complexity, making it less suitable

for large datasets.

Efficiency Comparison: The recorded times indicate that

Boyer-Moore often has the fastest execution, followed by

KMP and then Brute Force. However, the differences in

performance are more pronounced with longer texts and

patterns. For shorter fragments, the times may be closer, as

seen in some test cases. The Boyer-Moore algorithm’s

efficiency in skipping irrelevant portions of the text

contributes to its superior performance, while the KMP

algorithm also performs well due to its efficient handling of

repetitive patterns. The Brute Force algorithm’s higher time

complexity makes it less competitive in larger datasets, but it

remains a viable option for smaller or simpler use cases.

VI. CONCLUSION

In conclusion, this study demonstrates the application of string

matching algorithms—Knuth-Morris-Pratt (KMP), Boyer-

Moore, and Brute Force—in identifying songs from lyric

fragments. The integration of Spotify and Genius APIs enables

the creation of a rich dataset, facilitating comprehensive

testing and analysis. The results highlight the efficiency and

practicality of the Boyer-Moore algorithm, with KMP also

showing strong performance. The findings contribute to the

development of advanced music identification systems,

capable of handling large datasets and diverse lyrical content,

thereby improving user experience in music discovery and

retrieval.

The study’s findings indicate that the Boyer-Moore algorithm

is particularly well-suited for practical applications in music

information retrieval due to its ability to efficiently skip large

sections of the text. The KMP algorithm also demonstrates

strong performance, making it a reliable alternative for

scenarios involving repetitive patterns. The Brute Force

algorithm, while less efficient, provides a simple and

straightforward method for smaller datasets or less demanding

applications.

Future research could explore further optimization techniques

for these algorithms, as well as their application in other

domains of text and pattern matching. Additionally, expanding

the dataset to include a wider range of songs and genres would

enhance the generalizability of the findings, providing deeper

insights into the performance of string matching algorithms in

diverse contexts.

GITHUB LINK

https://github.com/AlbertChoe/Song_String_Matching

VIDEO LINK AT YOUTUBE

https://github.com/AlbertChoe/Song_String_Matching

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

https://youtu.be/PXBKl3IDbXg

ACKNOWLEDGMENT

I would like to extend my deepest gratitude to God for

providing me with the strength, perseverance, and wisdom to

complete this research paper and project. Without His

guidance and blessings, this work would not have been

possible. I would also like to express my sincere appreciation

to my professors, Dr. Ir. Rinaldi Munir, M.T., Dr. Ir. Rila

Mandala, and Dr. Nur Ulfa Maulidevi. Their exceptional

teaching and unwavering support in the IF2211 Algorithm

Strategies course have been invaluable. Their profound

knowledge and insightful guidance have greatly contributed to

my understanding and application of algorithmic strategies,

which have been fundamental to the success of this project.

Their encouragement and constructive feedback have been

instrumental in shaping this research paper, and for that, I am

truly grateful.

REFERENCES

[1] R. Munir, ‘IF2211 Strategi Algoritma - Semester II Tahun 2023/2024’,

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf

Diakses pada 11 Juni 2024.

[2] geeksforgeeks.org, ‘What is String – Definition & Meaning’,

https://www.geeksforgeeks.org/what-is-string/

Diakses pada 11 Juni 2024.

[3] geeksforgeeks.org, ‘Boyer Moore Algorithm for Pattern Searching’,

https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-
searching/

Diakses pada 11 Juni 2024.

[4] geeksforgeeks.org, ‘KMP Algorithm for Pattern Searching’,

https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/

Diakses pada 11 Juni 2024.

[5] geeksforgeeks.org, ‘KMP Algorithm for Pattern Searching’,

https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/

Diakses pada 11 Juni 2024.

STATEMENT

I hereby declare that the paper I have written is my own work and is not a
summary or translation or someone else’s paper, and it is not plagiarized.

Bandung, 12 June 2024

Albert (13522081)

https://youtu.be/PXBKl3IDbXg
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://www.geeksforgeeks.org/what-is-string/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/

